Contact Us
Xiamen Everbeen Magnet Electron Co., Ltd.
Add: Unit H, 4F Beirongxin Mansion, No. 8 Xinfeng 2nd road, Torch Hi-Tech Zone, Xiamen, China.
Tel: 0086-592-5781916
Fax: 0086-592-5123653
Home > Industry Trends

Industry Trends

Studies of the surface magnetic state of the Sr-M hexagonal ferrites near the phase transition at the Curie temperature
Time:07/07/2011

  Studies of the surface magnetic state of the Sr-M hexagonal ferrites near the phase transition at the Curie temperature

  A. S. Kamzin;V. L. Rozenbaum;

  A study is reported of the temperature dependences of the hyperfine (HF) interaction parameters in a ∼200-nm thick surface layer and in the bulk of macroscopic hexagonal ferrite crystals of the Sr-M type (SrFe12O19 and SrFe10.2Al1.8O19). The method used for the measurements is Mössbauer spectroscopy with simultaneous detection of gamma quanta, China magnets characteristic x-ray emission, and electrons, which permits direct comparison of the HF parameters in the bulk and the near-surface layers of a sample. As follows from the experimentally determined temperature dependences of the effective magnetic fields, the fields at the nuclei of the iron ions located in a ∼200-nm thick near-surface layer decrease with increasing temperature faster than those of the ions in the bulk. The transition to paramagnetic state in a ∼200-nm thick surface layer was found to occur 3° below the bulk Curie temperature. This offers the first experimental evidence for the transition to paramagnetic state in a surface layer of macroscopic ferromagnets to take place below the Curie temperature T c for the bulk of the crystal. It has been established that the transition temperature T c (L) of a thin layer at a depth L from the surface of a crystal increases as one moves away from the surface to reach T c at the inner boundary of the surface layer called critical. In the vicinity of T c one observes a nonuniform state, with the crystal being magnetically ordered in the bulk but disordered on the surface. The experimental data obtained were used to construct a phase diagram of surface and bulk states for macroscopic magnets near the Curie (or Néel) temperature.