Contact Us
Xiamen Everbeen Magnet Electron Co., Ltd.
Add: Unit H, 4F Beirongxin Mansion, No. 8 Xinfeng 2nd road, Torch Hi-Tech Zone, Xiamen, China.
Tel: 0086-592-5781916
Fax: 0086-592-5123653
Home > Industry Trends

Industry Trends

Magnetic and processability studies on rubber ferrite composites based on natural rubber and mixed ferrite
Time:06/30/2011

  Magnetic and processability studies on rubber ferrite composites based on natural rubber and mixed ferrite

  K. A. Malini;E. M. Mohammed;S. Sindhu;P. A. Joy;S. K. Date;S. D. Kulkarni;P. Kurian;M. R. Anantharaman;

  Polycrystalline single phasic mixed ferrites belonging to the series Ni1−x Zn x Fe2O4 for various values of x have been prepared by conventional ceramic techniques. Pre-characterized nickel zinc ferrites were then incorporated into a natural rubber matrix according to a specific recipe for various loadings. The processability and cure parameters were then determined. The magnetic properties of the ceramic filler as well as the ferrite loaded rubber ferrite composites (RFC) were evaluated and compared. A general equation for predicting the magnetic properties Neodymium Magnet was also formulated. The validity of these equations were then checked and correlated with the experimental data. The coercivity of the RFCs almost resemble that of the ceramic component in the RFC. Percolation threshold is not reached for a maximum loading of 120 phr (parts per hundred rubber by weight) of the filler. These studies indicate that flexible magnets can be made with appropriate magnetic properties namely saturation magnetisation (M s) and magnetic field strength (H c) by a judicious choice of x and a corresponding loading. These studies also suggest that there is no possible interaction between the filler and the matrix at least at the macroscopic level. The formulated equation will aid in synthesizing RFCs with predetermined magnetic properties.