Contact Us
Xiamen Everbeen Magnet Electron Co., Ltd.
Add: Unit H, 4F Beirongxin Mansion, No. 8 Xinfeng 2nd road, Torch Hi-Tech Zone, Xiamen, China.
Tel: 0086-592-5781916
Fax: 0086-592-5123653
Home > Industry Trends

Industry Trends

DC-60 heavy ion cyclotron complex: The first beams and project parameters
Time:06/30/2011

  DC-60 heavy ion cyclotron complex: The first beams and project parameters

  B. Gikal;S. Dmitriev;P. Apel;S. Bogomolov;O. Borisov;V. Buzmakov;G. Gulbekyan;I. Ivanenko;O. Ivanov;M. Itkis;N. Kazarinov;I. Kalagin;I. Kolesov;A. Papash;S. Paschenko;A. Tikhomirov;M. Khabarov;

  The construction of the DC-60 Heavy Ion Cyclotron for the Interdisciplinary Scientific Research Complex (ISRC) in Astana started in early 2004. The cyclotron was manufactured and tested at the Flerov Laboratory of Nuclear Reactions (FLNR) in Dubna. The main units were delivered to Astana and assembled in the ISRC building in the summer of 2006. The cyclotron was turned on in September, 2006. The first heavy ion beams in the whole A/Z and energy ranges were accelerated and extracted in December, 2006. The complex, based on the DC-60 cyclotron, is intended for applied and fundamental research using accelerated heavy ion beams ranging from Carbon to Xenon with energies in the range of 0.34–1.77 MeV/nucleon, as well as for experiments on the channel of low energy ion beams, where the ion extraction voltage supplied by the ECR source reaches 25 kV. The energy variation of the accelerated ions is accomplished by changing the ion charge. The possibility of smoothly tuning the ion energy by ±30% of its nominal value can be seen by changing the cyclotron magnetic field. Within the framework of commissioning the DC-60 cyclotron, a number of experiments were carried out with accelerating charged particle beams in the main points of the working diagram The acceleration modes for Nitrogen, Argon, and Krypton (14N2+, 40Ar4+, 40Ar5+, 40Ar7+, 84Kr12+) ions on the 4th and 6th harmonics of RF accelerating voltage in the whole range of magnetic field variation were investigated. A Krypton accelerated ion beam (84Kr12+) with a current of up to 2 μA was extracted into the beam transport channel, matched, and transported to a technological facility for polymer film irradiation. An irradiation field with the required particle flux density and homogeneity was provided by 2 scanner magnets, and the experimental irradiation of polymer films was carried out. The operational modes, with magnetic fields corrected by radial correcting coils of cyclotron, were investigated.