Contact Us
Xiamen Everbeen Magnet Electron Co., Ltd.
Add: Unit H, 4F Beirongxin Mansion, No. 8 Xinfeng 2nd road, Torch Hi-Tech Zone, Xiamen, China.
Tel: 0086-592-5781916
Fax: 0086-592-5123653
Home > Industry Trends

Industry Trends

A Novel superconducting toroidal field magnet concept using advanced materials
Time:06/17/2011

  A Novel superconducting toroidal field magnet concept using advanced materials

  The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high-T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high-T c superconductors within a low-T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.